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ABSTRACT

This paper derives (3311-IV) and summarizes (8VI) a.new.ﬁplug-in{
“and-grind” formalism for éalculating the gravifational waves emitted bj
any system with weak internal gravitational field#._ If the intérnai |
fields héve negligible influeucé on the system's motions, fhen the new
formalism reduces to standard "linearized tﬁeory“. _Whethef-or not grav-—
ity affects the motions; if the motioﬁs are slow and internal stresses'"
are weak, then the new formalism-reduCES to the standard "quadrupole-
moment formalism" (8V). 1In the general case the new formalism expressés
the ra&iation in termé of a retardéd Greén's function for slightly curvéd

spacetime, and then breaks the Green's—function integral into five

easily understood pieces: direct radiatibh, produced directly-by the

motions of the source; whump radiation, produced by the "gravitational
. ‘ P y g

stresses’ of the source; transition radiatien, produced by a time-changing

time delay ("Shapiro effect™) in the propagation of the nonradiative, 1/r..

field of the source; focussing radiation, produced when one portion of the
source focusses, in a time-dependent way, the nonradiative field of
another portiomn of the source, and tail radiation, produced by 'backscatter'

~of the nonradiative field in regions of focussing.



I. INTRODUCTION

a) Introduction to This Series of Papers

Thanks to the pidneering work of.Josaéh Weber (1960,1969), "gfavi“r-
tational-wave astronomy"‘may be a realify byrl980. Although WQber's_”events”
‘may turn out to be non—gravitatiénal in origin, second-generation dete;tors
l_qf the Weber "resonanf—baf" type, with amplitﬁde sensitivitiesrfoggﬁly IOQ?£§1d 5éf;_
ter than today's bars, are now under construction (Bréginsky 197k, Eairbank and
Hamilton, as described in Boughn et al. 1974); and fhirdﬂgenerafion detectors aré ;
being discussed. The third generation should be able to detecﬁ and étudy:the
gravitational-wave bursts generated severalltimes ﬁef‘yéar by‘suQérnovae in the ;:E
Virge cluster of galaxies. Detectors with other designé ﬁéy sﬁccegd inA
detecting waﬁes from pulsars [see, e:g;, Bréginsky énd Nazarenko (1971)]
and from near-eﬁccunters of stars in dense stér clustersi[gravitational
bremsstrahlung; see. e.g., Zel'dovich and Polnarev (1974)]. .
' And,_of_cﬁurse, t0ta1ly unexpected sources may be detéctéd;g [For reviews
of the prospectsrfor gravitationél—wéve agstronomy séé Misner (l97h),3Rees'
(197k), and Press and Thorﬁe (1972).1] .

In preparation for the era of gravitétipnal—ﬁavg éétfonomy, ouf ’
Caltech research group has‘éﬁﬁarked on a new projectf We seek (1) t0 elu-
cidate the realms of validity of the standard wave-generation fofmu;as;l_‘
t2) to‘devise néw techﬁiqués for calculating gravitational~wavé:generatidn
with new realms of validitj; and (3) to calculate.the waves'genéraﬁed by
particular models of astrophysical systems. Throughout this project we-
shall confine ourselves to general relativity theory.

- Most past calculations of gravitétional*wave éeneration use one of

three formalisms: (1) "linearized theory” or its quantum-theory analogue;



(2) the "quadrupole-moment fOrmalismﬁ; (3) "first~order perturbations
of stationary, fully relétivistic sﬁacetimes."

"Linearized theory" is the fﬁrmalism obtained by 1iﬁearizing_éen—
eral relativity about flat spacetimer[see, e.g., Chapters 18 and’jS of-
Misner, Thorne, and Wheeler (l973)-—cifed henceforth as "MTW"]. It is
also the unique‘linear spin~two field theory of gravitétion in flat space~’
time-—and as sucﬁ it has a 5imp1e quantum—th¢0ry formulation. [For ref-
erences and overview see, in MIW, §7.1, Box 7.1, and part 5 of Box l?.é}.
Linearized theory is typically used to calculate wave generation wheﬁ_the
SOurcg's self gravity has négligible influence 6n its ﬁotiéns (é.g., waves
.from spinning rods and from eléctromagﬁetic flelds in a cavity)..In this
paper we shall devise a new wave—genergtion formalism valid for any system
with small but ndn-negligible self gravity; and in Paper'III(Kovécé and
' Thorne 1975) we shall uée that.formalism to caleculate the gravitatioﬁal A_
bremsstrahlung produced when two stars fly paét each other with large im—
pact parameter, but with arbitrary rélativg.masses and veiocities.r

The."quadrupole4moment formalism" (in which the wave amplitude is
proﬁortional to the second time derivativé of ghe:soufce's masskquadruédle‘
ﬁoment) dates back to Einstein {1918),‘ahd has been canonized by Landau |
and Lifshité (1951). The derivations of this‘formalism which we find in
the literatufe are valid cnly for systéms %ith slow intefnai mofions aﬁd
weak (but non—negligiblej'internal gravitafional fields [see, e;g., tﬁe
post5/2_Newtoniaﬁ derivétion by Chandrasekhar and Esposito (1970)’ the
matched-asymptotic~expénsion ﬁeriVation bf Burke (19?1); and the de'Dondgr-
gauge deriﬁation by Landau and Lifshitz (1951) as made more explicit in
| Chapfer 36 of'MTW]. However, a detailled apalyéis given in Paper'II'l

(Thorne 1975) shows that only the slow-motion assumption is needed: the

(S



quadrupole-moment formalism is valid for any sléw—motion system, regard-
less of its internal fileld strenﬁths. Paper II_'algo extends that formal-
ism to include the radiation produced by all of the source's other
rmoments (both ''mass" momeﬁts and."current" moments); and it derives :
formulas in terms of the moments for the near—zone fieldS, the radlation
field, the radiation reaction, and the energy, momentud, and angular
‘momentum carried off by the waves. In a forthecoming papef Therne anﬁk
iytkow (1975) will use the extended formalism of Paper.II ‘to ealeulate
the "eurrent—quadrupole" gravitational waves prodﬁbed'by torsional oscii_ 
lations of neutron stars.

"First-order perturbations of statlonary, fully relat1v1st1c space-
times" is a technique that has beén used extensively in recent years to
analyze waves:frﬁm "fast—motion" oscillations of black holes and neutrom
stars, and from partlcles moving in the Schwarzschild and Kerr gravita—
tional fields. [For reviews, See Press (1974), Ruffinl (1973) and §36.5 "
of MIW; see also the recent.paper by Chung (1973).] It is not yet clear .

whether our project will'delve;into this technique:

b) Overview of This Paper

In this paper we confine attention to systems with weak intefnall
gravitational fields. Section IT rewrites the exact Einstein fleld equa—
tions in a non—covariant form {""de Donder form") that is amenable to weak—
field approximations. Section IIT gives a systemaLlc account of approxi—“
nate, weak—fleld formalisms based on the exact de Donder forn.of the fleld
eQuations~—including the accuracy of the various formalisms and their re—
lationships to each other. Section IVa applies thé analysis of Section |

111 to astrophysical systems, and concludes that, whenjanaiyzing theiri_



structure and evolution, one must typically calculate the stress—energy

tensor 2THU and gravitational field iﬁuv with accuracies:
| (error in ZTEv)fETOQf_§ €2
!(error in iEBU) {Eool‘ﬁ £
£ = (typical value of igﬂo inside sourée)

n {(mass of source)/(size of source).

Section IVa also conciudes that the external gravitational'field

must typically be calculated to accuracy .

| (exror in hﬁv) !

700 ¢ .2
2

2I1 ~ £

o

if one desires reasonable accuracy in the radiative part of that field..

Section IVb presents a "post-linear' formalism for calculating a
' Y

system’s structure and evolution (2TUV and 1

} to the desired accuracy;

and Section IVe derives a plug-in-and-grind formula forlthe‘highér—__
accuracy external field (éﬂuu), which contains‘the fadiation. _Se;fion'V

shows how the réSulting formalism, when appliéd to'siow—motion éjstgms;‘

reduces to the standaré “quadrupole-moment formalism”.

We reéommend that, before tackling thg resf‘pf this paper, the =
reader peruse Sectién VI. That section sﬁmmafizés our bost—linear fof—)'
malism and our formula for the external (radiation) field.

The "guts" of this paper, in terms ofrcomplex calculations, reéide
in the Green's-function ganipglétions of Séction I&c; Our pérticﬁlar way

of handling the Green's functions is motivated in Appendix A, and has been

influenced by'the following papars: De Witt and Brehme {1960) (exact Green's



functions for scalar_and vector wave equafions in curved spacetima);
Robaschik (1963) {exact Green'g function for tenéor'wavé equation in

curved spacetimé); John (19733,b), Bird (1974) and especially Peteré (1966)
(Green's functions in weakly curved spacetime). Aitﬁou”h these ﬁaoers had
much influence on us, our specific manlpulatlons are so0 dlfferent that we

have found it impossible to trace the details of that 1nL1uence in cur wrlteup.
II. EXACT GENERAL RELATIVITY,‘REWRiTTENjIN MYEAK-FIELD LANGUAGE"

We begin by writing the exact, nonlinear Einstein field equatioﬁs in
an arbitrary coordinate system in the form [§20.3“of T, §lOOrof.Landau',

and Lifshitz (1962)]
povB _ 3 Y uv - S o
HL-L a8 | 16w (-g) (T"" + tL L) . A1)

where "L-L" means "Landau-Lifshitz", and where

Hiavﬁ —.g uqaﬁ gdvguB . o - .: - E '  .'7. _‘(éa)
B e la L el 5 @
tgﬁL = {16W(—g)]_1{9u8 xgku’u _ gal’AgBu . ; gaSgA g}v;pgpﬂ,u'_
- (ga;.\gu\)_ﬁ_?\).,pﬁlup,?& +: gBAg#vgav,pguo,l) ‘+ gmgvpgak gsu’.pr (20 -
+'% (2gakgsu GBS u)(zgvpgc—r 8no vf)ﬁ WA g?é;u} '{2))1

The equations of motion for the material stress;energy tensor T follow

directly from the field equations‘(l) and can be written in the eguivalent

forms : _ _ -
™ =0, [_(—g)(T“M 001 gm0 L o



[Here and throughout this series of papers we use the notation and sign

8

conventions of MIW; in partiéular =G =1 gas and ga are the com-

ponents of the metric; cozmaé and 3's denote partial derivatives, Y,d =
_SaY = BY/axq;.semicolons denote covariant derivatives with respect to the
‘metric gyp; and our signéture is (—4~+4;).] |
Now, and henceforth in this paper, we impose three_restrictions on
our anaiysis: (1) ¥e confine attention to systems witﬁr"weak intefnal
gfavity"—~i.e.; to systemé thrOughout.which one cgn‘intfoduce nearly Lorentz
coordinates. ‘(2) We coniine ourselves to igolated systgms"——i.e., to sys— '
tems that are surrounded by 2 region ("local wave zéne"j, much lérger-thén_
a characteristic wavelenéth of the émit;ea-waves,rin which all waves ére |
outgoing and in which external masses have negligible influence on the
rgravitational field. (3) We restriet our analysis to thé-interior of the
source and its local wave zone, and throughout theée regions we usé neariy:
Lorentz, asymptotically flat coordinates, specialized to satisfy the deDonder .
gauge condition, | “
Mathemaﬁically, thiese restrictions éfate that.the "gravitgtiqﬁai
field” 7 ‘ .” | |
| wY o= ‘qw—%nw._ o N (4)

has the properties

Iﬁuv| << 1 evervwhare, o : : - L (5a)
Iﬁuv} n 1/t as r - o, where T = (x2+ y2+ 22)1/2,1 ~ (5b)
i is devold of incoming waves at 1 > =« . ~ {5e)
ok v = 0 .(d=honder conditiomn}. =~ . (5d4)

With these restrictions, the exact Einstein field equations (1) take on the



form

[, Y = caene-p 2@V )= 75 B L

Here [j:s is the wave operator for scalar fields in the curved spacetime

described by the metric gaB :

O,: oo, 0?5 . o
[Appendix.A which is best read éfter oﬂe has finisheé reading the rest of
.the paper, expla1n5 why we write the field equatlons in terms of [j I
rather than in terms of some other wave operator such as [j QBB 88
(the flat-Space wave operator) or [:]t (the curved—spaca wave aperator for
tensor fields).]

Egquations (ib)-(?) are the exact, nonlinear equatioﬁs of general:
relativity for any isolated, weaknfieidsystem—wb;t they&age written_ih a
- very.special coordinate system rather than in generaily covariant form.
Because IgﬂV‘ << 1, we can express each Quantity in 6ur formélism,

. - : S .

. v . e . .
except T , as a pover series in . When writing down such a power

—HN

series, it 1s convenient to faise and lower indices of h™" with the
Minkowski metric naB = naB = diag(-1,1,1,1):

‘:-"-\): SV ‘ - - -—]_J\)V" =T )

ha T nauh SRR hoaB B naunﬁuh s - b= hr:c i E?C' o .(83)‘

It is also convenient to define a "trace-reversed" gravitational field

Y by

v

i hontv o, . - _ S - (8b)

1}

:vhd

v

Liv

and to raise and lower its indices, like those of R , with the Minkowski

metric. Note that equation (8b) implies

b



o - —uvzhuv_i uv

shntv @

To derive the explicit power series éxpansions for guv, gUV, guv,
4etc., one can proceed as follows. Equation (4) is the desired expansion

for g“v . It contains only two terms:

HV JIAPIR Huv

g =n - . ' -. . {9a)-

' The expansion for the metric determinant (-g) is obtained by inserting ex-

pression (2a) inte the second of equations (2b):

(il

(-g) ~detf(g”\?.{| = ‘—det ”.nlJ\J _ Euv”

]

1-E+ @7 - @ . oy

The contravariant components of the metric are then obtained by inserting

(9a,b) into the first of equations (2b)

gu\) _ (_g)-llz gu\)

"—*4

=r#v—ﬁ?v—%ﬁWﬁ“ £E

1 v
v VL @ B””‘“h) ]

7 | (9c)
and the covariant components are obtained as the matrix inverse of these,:

contravariant components:

- 1+ T T 1l == 1
= £ + - = +3 1 -
By = My T hpv > bon Ry huah v 5 h_huv 5 N , (h 7 B)+o[(h) ]
'(9d) ‘
- The connection coefficients FUGB’ which ap?ear in the usual expression
TUU.V = 0 Ffeor the équations of motion, are obtaihéd_by inserting expansions
» Vo ' . L



(9c,d) into the standard formula

s 1wy o
== + -
Z8 (sya, &v3 0 'goa{_S ,Y)

ap B

15 =i S O U TN S 3
==& _+h -h M- - b’ 1@

20 g TR g g’ 2 TG0 g R pgtSgh Nes™ )---+Oi[ 7} (99)
Similarly, the scalar-wave operator []s is obtained by inserting expan—~ .
sions (9b,c) into equation (7), and using the deDonder gauge condition
(5d) to simplify:

o aB 4 . ~0B 1= oB

[, =n™ 83 - @ = 3hn")30

3

— 2. S
8 + 0[(h) "] K . (55>
and the éomponents of the Landau-Lifshitz pseudotensor are obtained by in—-

serting expansions (9%a,b,c,d) and the deDonder condition (3d} into equa-

tion (2c¢):

o _ -1 31 o sAv Tpu vp A =By
g = (16m) {2 Ny R By h v i 0
_ | oA —fv  —p , _BA_ oV —Up S L
(n _ nll\) b s P h s}- o n}-m‘h s) h :)‘*) - ‘ (gg) SR
'“1_ oA Bu _ aB Au _ T —pd . 3
+ 3 (an LI R T CL N IS IS S ,p}. oLl .
Henceforth in this paper we shall regard guv, (73), guv, gUU’

o

ruaﬁ’.[]s’ and t L "as shorthand motation for the infinite power series
expansions, whose first few terms are shown in equations (9). Given these
expansions, the full content of general relativity is embodied in the equa-

tions of motion for the matter



If the system is several lumps with masses m and sizes & , separated
by distances b >> £ (e.g., a binary star system or two stars flying past

each other), then

€ v m/b if one is interested only in the relative motions of the lumps

e v mfl if onme is zlso interested in the internal structure and
dynamics of the lumps.

We shall characterize every wegk-field approximation formalism by'
tvo integers n; ~and n - These "order indices" tell us the magnitude

of the errors made by thejformalism:2

2N0te that all of the ]Tuui are & TOO, and consequently all of the
]Eﬂv[ are 5 EGO. This fact dictates the form of equations (12),
1 n o :
](er:ors in T;v)/‘TOO{fu e T _ S <. (122)
| (errors in Eﬁv)/<ﬂooi Y Enh . _ ' (12b)
_For example, a formalism of order (nT,nh) = (1,1 makes'fractional errors

of order £ in both the stress—energy tensor and the gravitational field, -

while a formalism of order (2,1) makes fractional erro‘rst‘e2 in THV and

£ in EUV .
Errors in h" , when fed into the equations of motion (10a), produce
. 1AV . T\t R . -
errors in T 3 and similarly, errors in T, when fed inte the field equa-
A : v ] . :
tions (10b), produce errors im h™ . This feeding process places con-
straints on the order indices (nT,nh) of any self-consistent approximation

formalism. The constraints -are revealed explicitly by an order-of-magnitude

. znalysis of equations (10a,b):

11
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Consilder a weak-field system with characteristic field strength
£ .and characteristic length-time scale 2 . Below each term of equations

(10a,b), write the order of magnitude of that term:

V- ~ TRy VoL
SRR Ut _ T T

i ‘ S '.(133)
a® /0 /e a@® a

Ow- ~167(- g)l/2 ™ em(-g) T2 MY —cég)"l/z W R gan)

b1 ,8. + 0
2 .00 2,,2 2,0
(e/27) T _ (/87 o ET)
Equatlon (13a) shows that fractional errors € in R7Y produce frac-—
+1 v Ry ng& o ‘ -
tional errors € T e ; i.e., € 2 € ; l.e.,
n,<n+1l . - R - (l4a)

T — "h

Equation (13b)--together ﬁith the order—of—magﬁitude field equation

TOO Y E/£2~—shows that fractional errors enT- in Tuv produce fractional’
n ' 1,
errors € T in Tl 3 i.e., th > e T;_ i.e.,
n <ng - o L (14b)

Equations'(lﬁa,b) can be restated as the following constraints on the order

indices of any self-consistent approximation formalism:

n, =n~1 or 1n, =n

h T “h

T A _(15};'

In. other wovds, the order (nT,nh) of any approximaticn formalism must be

either (n,n~1) or (n,n) for some integer n .

Suppose that a specific system has been analyzed using an approxima-

‘ : RTAY) -
tion formalism of order (n,n-1). Denote by nTU (xa) and (n_l)ﬁuv(xu)'the



explicit expressions obtained in that analysis for the.systam's stress-—
energy tensor and gravitational field, From these expressions it is

. s i N L oy B AV o £
straightforward to generate an 'improved' gravitational field nh (x)
with fractional errors € . The key to doing this is the structure of
the field equations (10b): 1In these field equations, fractional errors
B

n-1 \Y . n-o,_.
of order & ~ in produce fractional errors of prder € in both

‘ 3 and the expression

12w L1/2 ue B
- l16m(- - {- .
TT_( £) (T + tL_L)V (-g) .h 8 h o
T\ . ey N .
Hence, nh (t,f) satisfies the differential equation
. Y _ B PPRPIIIG b ST\ RS TV AN ~1/2 —ue =R
(n,n_l)DS b (n,n_l)[ 16m(-g) " “(T l-l-tL_L)_. _( 2) n gh ,u] A

(16)

Here the prefix (n,n-1) means thar a quantity is to be calculated, with

fractional error en,'uéing nTUV and (ﬁ_l)ﬁuu : 'This inhomogeneous,

. : \Y s .
linear wave edquation for nﬁu - can be solved using the retarded scalar

Green's function for curved spacetime (DeWitt and Brehme 1960):

the retarded scalar Green's function for the curved
spacetime with the metric (5 3)g,, of the (n,n-1) '(17)
approximation~-a Green's function with fractional

errors €% ‘ '

G(P',P)

H

(n-1)

" The result is

sl L-L > B

By = I (n,n_l)'[ 167 (~g) (T™Y + £1Y_) + THE ”H”'S,ajp', (n_l)G(P',P)d4x',

(18) .

13



This paragraph can be sumuarized as follows: Any approximation formalism

of order (n,n-1), when augmentéd,by equation (18) for nﬂﬁv, becomes an

approximation formalism of order (n,n).

‘Special relativity and linearized theory provide a Qimple example
of the above remarks: Special relativity is the approximation formalism of
order (1,0) which one obtains by the extreme truncation process of setting

Y 2o in equations (9) and (10):

03“"=0 , L

= v | = -
0tL_L = n T O. . (192} .

! ngv w1,

The retarded scalar Green's function for a space with metric Ogﬁv = nuv-
is
. , - -1 l ) p“ p| U_ a' 3 ) : | .. -
oG(P!,PY = (4m) T8 Ignps G = G -x )] . (195)

(Here 6ret is zero if P lies in the causal past of P',-and it is the
. Dirac delta function otherwise). Heuce, eQuatidh (18)--by which one must
augment special relativity in order to obtain a formalism of order (l,l)—w‘

has the form

—Hv v 1 ' o o -
= 4[ TP L5 ﬂpc(xp-xp Y(x -x )]d4xf
lTuv<x - Iz‘{—}fll :El) 3 ’ -
=4J S . @

The resulting (1,;) formalism [equatioﬁs {19 aﬁgmeﬁted by eﬁuation.(éd)j
is the."iinearized theory of gravity"; [see, e.g., §7.1, Box ?.l, and
Chapter 18 of MTW.]

Newtoﬁian theofy ané the ”quadrupole—momént'formalism for-wave gen-— _‘

eration" are another example. Newtonlan theory is the weak-field formalism

14



of order (2,1) which one obtains by not only truncating each séries that
appearé in equations (9) and (10), but by also Imposing the slow-motion

and small-stress assumptions

o . o 3 o .
v2 = |1 gj/T00|2 e, |t 2%0 2 21
. | N - N 72
(size of system)/(characteristic time scale of -changes) 5 .¢ .

Equation (18), by which one augments Newtonian theory in order to obtain
a formalism of order (2,2), has the form, when evaluated in the radiation’

zZone

éﬁi?(t,f) = (2/x) ii?(t—r) = (gravitational radiation field) . (22)

_ Here ‘Eij is the reduced quadrupole moment of the source, and TT
denotes "transverse~traceless' part. This is the standard wave-generation .

formula of the quadrupole-moment formalism; see Chapter 36 of BIW;

IV. WAVE GENERATION BY A WEAK-FIELD SYSTEM

a) Motivation

Weak~field'systems are of two types: tﬁose with‘negiigible éeif—
gravitational forces (rotating laborétory rods; microwave cavitie;; etq.),
and those whose internal motions are significantly influenced by sélf— |
‘gravity (pulsating stars; binér} star systems; etc.). _

For‘a system witﬁ negligibie'self—gravity, special reiativity gives
a fairly accuréte:description of the internal ﬁotions; and, consequently,
linearized theo}y'[thé {1,1) formalism obtained By artaching equation (18)
~or (20) onto special relativity] gives a fairly accurate aescription of

gravitational-wave generation.

15



For most weak-fiald astrophysical systems; sélf—gravitational
forces are important. In this éasa, when analyzing a system's internal
motions, one must use a formalism of order (2,1); and when célculating
the waves those motions generate,.ona mﬁst augment the (2,1) formalism

by equation (18), thereby raising its order to (2,2).3 If the systeﬁ has

3Ln very special cases second-order grav1tational forces may be as impor-
tant for the system s motions, as first-order forces. An example is a
radially pulsating, weak-field star with adiabatic index very near 473
(Chandrasekhar 1964); see also the discussion accompanying equations (61)

~below. When analyzing such systems one needs formalisms of order (3,2)

~and (3,3).

slow internal motions and weak intefnal stresses, Newtonian theory [order‘
(2,1)] will suffice for aqalyzing its motions, aﬁ& the quadrupole—mbment
formalism {order (2,2)] will suffice for wave genera#ion. Howeve:, for
analyzing fast-motion systems (e.g., two stars flying past each other with
high velocity and deflecting each other sllghtly—-the relativistie brems-
strahlung problem) one meeds unrestrlcted (2,1) and (2,2) formalisms. The

objective of the next two sections is to derlve such formallsms.

b} The PoétvLinear Formalisgm

A weak-~field formallsm of order (2, l), unrestrlcted by any constralnts
‘on veloc1t1es or stresseb, can be obtained by truncating equations (9) and

(10) at the approprlate order:

il
=3
i

Ty —v . ‘ o - ‘ 7

fr
=

1
j=x

]
=
+
ja]

ey = l- B (23b)
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18 ::\.n - :Lh.}\“l (Where lhuv = ’HU\) - % 11 7.[:—-) . . o (230)

.(23dA)
lr“uB = %(lh“u,g + 1hus,u - lhaB’”) o S -.(-23e)_
o, - oo aa, | | - (235

ltg?L - (lﬁﬂ)—l{%ﬁ&?_nlu lgav,p igpu,v * Ty nvplggl,§.iﬁgu,9
- @ My 158\’;,0 1?p,)\ + ngk ﬁw 153\).,__0 1?‘;'5,)\)_ N | "(2.38)
+ 2™ nE’F - o nku)fznvp Mot = Nog n,) Ry de’u} :
'ZTH\);\J = "1Pudv2Tm) - 1P\)av' ZTPQ _ , | : o , R §243)
-naB 1?[\_),0&8 = -161T‘.2TU\) . | - | o o (.2-45)

Wie shall refer to the formalism described by these equations as the
"post-lineax formalism'". To analyze a system using the post-linear formal-
ism, one must first specifyqthe_functional dependence of the stress—energy
tensor ZTPv on the system's nongravitational variables (e.g., density,
pressure, velocities, electromagnetic field tefisor, --+) and on the graﬁi—
tational field 1h ; and one must then solve equations (24a,b) simultane-
ously for the system's motions (ZTu accurate up to fractional errors ™ e

and for the gravitational field (lEﬂV

accurate up to fractional errors
‘vg ), Paper IIT will carry out such a calculation for the motion of two

stars of arbitrary relative masses and velocities, which fly past each

other with large impact'parameter.

17



&) The Post-Linear Wave-Generation Formalism

Having calculated a system's internal structure and motions using the
: ¥

pest-linear formalism, one can then calculate the gravitational waves the

system emits, zﬁuv,'by evaluating EXPIESSion~(18).‘ In evaiuating (18) one

needs an explicit expression for the retarded Green's function lG(P',P) as-—
- - Iy t = + R
sociated with the metric ”uv 1nuv

lguv . _In:the next subsection (§i)

we derive lG(P',P); then in 31i we place comstraints on our system which
simplify iG(P',P); and finally in §iii we use 1G(P',P) to evaluate the wave

field 2?1“‘“' )

i. The Green's Function 16(P,P)

We sﬁall obtain lG(P',P) by taking the weak—fieldllimit of the'exact
Green's function G(P',P) for a space described by'an'exact.metric _guv.;
Thefexact Green‘s function is forﬁally rather siample, so long as the congru- :
ence of geodesics that emanate from the source point lP':rdoes hﬂt get
focussed so strongly along the future light cone of.. P! Ehat géodesics cross.
Henceforth we shall assume 'no crossing of geodesics on the light come.'" Later
[eqs. (48), (48"), (48"M) below] we shall examing the éonsﬁfaints placed on ) -
the radiating system by this "no-crossing" éssumptién; L

DeWitt and Brehme (1960) have derived thé exact Green's fugctioﬁ'

G(P',P) for thé case of no crossing., Their Greea's functign consists of a
Mdirect part" and a Megil"

G(P!LP) = Gdirect 4+ gtail ] B L )

- The direet part is nonzero'oply if P liés on the future light cone of P!
fdenoted _j+tP')]. By virtue.of the ”no—chSSing” assﬁmption, when P 435’
near j+ﬁP') there is a unique geodesic.f£0m P' to P with a unique;squared
length |

13



2
myorld functiom™,y _ 1r-1 for timelike geodesic ) pProper distanCE)
( ) - 2(+ }[ :

t =
QPP = Lgee Synge (1960) 1 for spacelike geodesic’ ‘along geodesic
. . | | (26)
= g in notation of peWitt and Brehme {1960) .
TR direct
Because J (P') 1is characterized by £ = o, G must have the form
direct oo py = et M s e . @D

i e
where Gret is the Dirac delta‘function on and near jT(P‘), and is zero on
and near the past light cone [3-(P')]. The quantity AP, P is an ampli-
tude factor which would be unity in flat spacetime, but in curved spacetime
ig given by

set 122072800 1|
5@ s

AP ,P) =

We shall use an expression for the tail different from, but equivalent
to that given by DeWitt and Brehme. To derive our expression we insert equa-=

tions (25) and (27) into the wave equation

‘ 2 ~1/4 1 ' ' : v t
O c(Pr.P) = -ls(Pe)] Mg 0"y 0" sy 8P )
The result is

‘ot e e (@M s+ v a2+ @t e@

. ap? Y e@) o @oay

where &' and §" are the first and second derivatives of the rerardad Dirac
delta function, V is the 4-dimensional gradient operator, and ?K is eco-—

variant derivative along the 4-vector

19
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K = v . - (30b)

1 H £y

[Here and below we suppress the subscript "ret" on 4(2).]  We then manipu~

late expression (30a) using the relations

Ly a . (30¢)

et@ = ~28'@ , P =22, Oo-4=--2""7

[The first of these is a standard identity for Dirac delta functions; the
second and third are egs. (1.11) and (1.63) of DeWitt and Brehme (1960)1.

The result is
o_c®-_un@ M e . G
We then use relations (30c) and the relation A(P, P) = 1 to rewrite this

in the form

o et am ™t a- s s@) = +um o m e @ . 6

Equation (31) tells us that _Gtall jumps from zero outside the light come

to a finite value inside the cone, without having any singularities on the

cone. Equation (32) allows us to write (restoring the subscript ﬁret")"'.

0 - if P AT (P B o 3 (33a) -
ctttpr py = —(zm)‘lf [0 ACP', P [2PT,PDIF 61 [2(PT,P] x

< e EPIY 2 d as e Ty . (33n)

Here I (P) means "the interior of the.past light cone of P;" and condi-

tion (33a) suppresses the unwanted light-cone part of (23b) [i.e., sup~

1/2

presses (4W)—l (L-A77) 6()1. -
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Equation (33 is the form of the tail which we shall use. This form
was suggested to us by the work of Peters (1966).
We now specialize the above equations for the retarded Green's func-
- 1 o ) = ) . — - — ’
tion to the case of a weak gravitational field 180v HUU + lhpv , begin
ning with equation (26) for the world function. Let ) be an affine param— -

eter along the geodesic linking P' to P
@ (A) = geodesic with coordinates EQ(X) 5

i

c(0)

L

Then equation (26) can be rewritten in the form [cf. Synge (1?60), p- 47]

QPP = J-% gﬁv(dg”VdA)(d;”/d;) . - (35)

c
The‘rightwhand side dis actually an action principle for the geodesic equa-—
tion [cf. MTW, Box 13.3]. Therefore, if we evaluate the integral along the
"straight line"
1 1 : ‘
LM B Ex #E-x) - 38
‘(see Fig, 1), which differs by a fractional amount of 0(g) from the true geo—~
desic ¢ (}), we will make fractional errars in { of'D(sz). Such errors are .
acceptable in 1G(P',P), since its frational errors are also O(EZ); cf., eq.

" (17). The result of integrating expression (35) along the slightly wrong curve

OCLA) .iS
L ReLP) = 20D PP s S on
. where
1 -1 0.8 S | . '
RUCARSIERS © Gl I | o - B8y
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. L1 g ) ’ .
YPLP) 25 x J Bt | E (38b) |
o C
s oL o  (380)

Equation {37) is the desired expression for the world function. Turn
next to the amplitude factor A(P',F). Either by direct calculatioﬁ from
egs. (28), (23b), (37), (38), and (BlZ), or by invoking-eq.-(95) on page

63 of Syngé (1960), one arrives at the'expression'

detf[lgla§,|l _’ Sy 1

1] = = - — — a— t
R GANONE Y (-3 qh- 350" detlllﬂ’as,“
¥ E B 39)
=14+ 22(P,Py .
- . Here
_ 1 a2 ' : AR ay
a(P',P) = 5 X X J -1RCt_8 A{1-X) d_)\. ’ _ {40a} -
c ' ' : '
0
where ,lRaB is the-Ricci tensor, accurate to first order inm lhuui"
R = " 21%5,0 ‘ a - (40b) o

C170g
In eq. (39) we ha§e éimplified notation by uéing_a priﬁe to_deﬁoté quanfiw
ties evaluateﬁ at P', i.e.; lh' = ih(P') whiler lh Ellh(P}'.' Hengeforth
wé Shali resérve primes‘for this purpose—-except that 6{ _and‘ §" are
étill.derivatives of Dirac delta functioné.
Turn nex# to.the "saurce term' (&n &),a" Q’a" for the tail (eq. 33).‘
Tﬁe tail itself is of (&) -compayéd_to the direct part of the Green's

function; therefore we can permit fractional errors of 0(g) in the tail——

"

s

which means we can use the zero-order value of ° in the source of the
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tail:

1P, pm = =T L 1)

By combining this with equation (3%} and by using equation (B7) of

~Appendix B, we bring the source of the tail into the form

1T

[2n '1'“*’"."’”"”,.3-- @@ e ey L @)
where | . |
B(P'?Pﬁ) = g f' (Ryg A7 dh o _'(43aj'
, o .
and dg? is the "straight iine" froﬁ. ?' to P".‘(seé Fig. 1)

Cf-”

_n@:'g'zx +ox* L o ~ (43b)

Turn, finally, to the propagator G(P",P) and the volume element -

(-g”)l/Z

d which appear in equation (33) for the tail. . Because the
tail is of 0Q(g) compared to the direct part of the Green's function, we
can ignore all curved space corrections in the amplitude of the propaga-

tor (but not its phase), and in the volume element:

| c(P",P) (g2 bk = am7L Gret{lﬂ(P",P)]‘daﬁ' . (44)

in expression (33b) for'thall .

. All of the pieces for the first-order Green's function are now at
hand. By combining them [egs. (25), (27), (33), (39%), (42), and

(44)] we obtain the following result:

: direct _tail - .
lG(P"P) = lG , + lC » (45@)
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direet _ -1 ' i : : ' . ’
lG = (4m) [14+a(P',P)] éret[lQ(P P . A. (45b)
0 CiE PU L TP ’
Gtail - _2 ' o L
1 ~(4) J BCPT,P™) &1 [,0P",P)] 8 _ [,8CP",P)] ="

if Ple T (P) - e (450

Here ‘lﬂ(P',P) {and similarly lQ(P',P")‘ana 19(??,?}} is given‘by equa-
tions (37) and (38), o(P',P} (the "focuésing function™) is defined by ex—~
' pressions (40), and B(P',P") (tﬁe "tail generator') is defined by expres—

sions (43).

ii. Constraints Designed to Simplify the Green's Funection

Expression (45) for the Green's functian is valid oni& if geodesics
emanafing from P' <fail to cross on and near j+(P'}.‘ Crossing would be
caused by gravitational.focussing; and at any crqssing point, the ék;ct
amplitude factor A(P',P) would diverge. Thus, the ériteriénrfo:_no croés~
‘ing is finitéﬁess of A along 5+(P').

‘Consider our first—order expreésioﬁ(39),(40) foriﬂ.lEvalgate it in

the mean rest-frame of the source, with coordinates: centered on P' so that'

* = . noiil', n = (unit spatial vector pointing from P' to Py,

Ir

r = (spatial distance from P' to P) ,

o~
1l

T/r I (fractional distance from P' to P); ,'(465 ,

o ' . i - - 1
and invoke Fhe first-order field equation 1Ra8 = (1233 2q18 lT). . The

. result is
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lA(P',P) =1+ 20 ;
T ‘
o= %'J (n%a® 1T35) ;1;-?72) dr . .(47)
! S o _ :

‘This expression for l& can Egggz divefgé if the source is_boundéd, bécanse
once the integratianpoint T gets outside the source, lTué. vanishes‘and
1& stops increasing. 'Hqﬁever, if the focussing function a-‘approachés
wmity inside the source, then second-order and higher effects Will.come into
play. As one moves 6ut into thé vacuum beyond the source, those sécgnd;order

effects will be essentially those of the "focussing” or "Raychaudhuri"

"~ equation; they will produce a divergence. Thus, the comstraint

CONSTRAINT:  a(P',P) << 1 for all P’ and P O (48)

is necessary for the validity of the first-order analysis, and simultane-
ously protects us from 'geodesic crossing."
For a system that is roughly homogensous witﬁ mass M and linear

size L , equation (47) gives

an (/L) ve <<l g o (48)
so there is no problem in satisfying the constrainti(#S). However, for a
. highly inhomogeneous éytem (lumps of mass m and size & » Separated by
distances b $>'2), and for rays originating in one lump and passing through

another, equation (47) gives
e & ob@Hr A B/ @ .
In this ease the constraintf(éa) is significant: it éays that to avoid'
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too much ray focussing, the lumps must not be too far apart

(b/2) << (L/m) ~ lOﬁ(R/RG)(MG/m) . L (48™)

The Green's function (45) would be much easier to use if,_throughqut

it, we could replace the first-order world function lQ by its zero-order

approximation 0 = %-n Y %Y . Let us examine lﬁ teqs. (37) and (38)1

0 8

in the rest frame of our source, for points P on or near j+(P*):

o . 1.0 .0 7 ' 0
PP = SE A [FX A+ X+ 2y (PP (X X))

0 - : . | X
= X(-X +X+ Ats) L (492)
where
X = ]XI = (distance from source to fileld poiﬁt) o {49b)
Aqs = y(P',P)/X = ("Shapiro time deiay")' . o (49c)4i

For field points P far outside the source, the dominant contribution to
the Shapiro time delay is the asymptotic "1/r" field of the source. It

produces a huge delay of

= - Shapiro time delay due.to.]

A= 2 n(x/L) [asymptotic field of source

M Z (mass of source) ' : - o o (50)
L E'(charatteristic size of source) .

This delay is time independent and is independent of where inside the
source P' is located (aside from a negligible piece of size % DML/X)
therefore its only effect on the radiatiom is to delay'thararriﬁal time

at a given radius. Henceforth, for ease of calculation, we shall remove
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this constant delay from the argument of our Green's function. We can
always reinsert it at the end of the calculation if we wish. With this

constant delay removed, we can Tewrite £ as

{

O
t = -— ! -—
lQ(P ,P) = X[~X"+ X + (Atg A)P,p]
= QPP+ (PP + ANy Jdo , (51)
for P' inside the source and P far OutSlde it ,
wheré '
Uu = PU/M = é-velocity‘bf source; XuUp = -q _#.' . ' (52)

The remalning "internally—produced delay between P and. 7, Atg— A ,

is of the same order of magnitude as the total delay between two internal

points P' and P':

([},FSH I\)P-;-P v (At A)P"P v (At )“P P f ' llhDO‘ dr‘
. across source

A M for homogeneous source : : o (83)

o~ ¢n(bfL) for lumpy source- .

) Henceforth we shall assume that this internal time delay is small com-
pared to the characteristic timescale on which the source changes—i.e.,

small compared to the qharacteristic reduced wavelength * of the radia-

tion emitted,

"

CONSTRMNT: (At) vmogn(b/e) << Ko (s4)

S/internal

[Example: If * is 100 times larger than the SCthIZSChlld Ladius, 2m,

of a tump, then b/l can be as large as exp(lO) N2 ox lO without
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causing problemé Another example: If 3q% b (which is the case for brems-
strahlung), and if £ >> m (which is required for fields to be weak), then

the condltlon AL (separation of lumps bigger than size of lumps) guarantees
that constraint (54) is satisfied.]

The constraint (54) allows us to expand our delta functions S(lﬁ)

in powers of the internal time &elay.' Discarding terms that are quadratic

and higher-order in (Ats),' /*, we obtain for the Green's function (45}
internal ‘ o : _ ,
' _ direct tail ' ' ' o '
1G(P ,P) = lG + lG : , S ‘55&)
direct .o _ -1 1 a8 ' pve LBy
16 (PP = (4" {8, G XX nyg) +aPLP) S G EX Tp)
' u 1 . o.B '\ .
‘ + [y(P ,P) + AX U ] sret( XX n S) 3 - {55b)
0 if P £ I’(P)
tail , o, _ b =2 + pn 1 o' _g" - 1 —o=B
EPLP) = (- 6m f B(P",P™) ar (G g 5, G X
if  Pel (P .
In thesé equations
' t " . PRl ‘ T - 1 ’ L
AXq = xa— xa s Eg = xa-"xa » -Xa = xa — x? ‘;: ' (56)

gee figure 1.

Equations (55) are our final form for the scalar Green s functlon
in a‘space with linearized metric 180 = v + lhpﬁ . This Green's fune—

tion has fractional errors ' - .

-

|(errors in G)/ G[ n Maxlmum of {8 L OE, [(Ats) / *ler in genérai,

intermsa
2 : : '
v e for most sources HE : (57)

and it has been stripped of its asymptotic time delay (eq. 30).
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iii. The Gravitational-Wave Field 2??““)

Bf inserting expressions (55)  for lG(P',P) into eguation (18) we ob-
tain the following expressibn for the gravitational field far outside a

weak-field source:

o 1AV Iy FAY) =V Eng 1LY UV . : . A ‘
G = hOT th + 2 T 2 + 2 TL H . (58a)
BV =4t 8 (—}c"tx6 ) TuU(P') [1 - P e | (58b) |
2D Nap’ 27 M 1 SR §
U | ’ uv r 4 t o . |
ey J @) 8 G g Ve s
—v , . é AN e b oy
Jhrp = 4 J [«,»(P ,P) + ax™ U } M (—-x Neg) 2T (P') dx' (58d)
=V 1 B -1 '—1.2;,37 .oTNg 4 ,- -
by =4 J Sret(Z}gx o8 [1tL BRI L L ,p]at o d (58e)
THY ._ r P 1 J—_ " 8” 1z
B = (UM ” 8PP 8], (3¢ X 6 FXT 1m0

P' e17(P) _

Ve dedte L e

. , ) at : G i . : ’
Here P' and P" are source points with coordinates x and x (¢f.fig.1l); the .
Y Y Ty

field point P has coordinates x°; and

3o » g L L 4 are the stress-

ehergy tensor, the pseudotensor; and the gravitational field obtained by a

post—linear analysis [egs. (23) and (24) J; Gret is the Dirac delta fumction on .
the futuré light cone of the source and zero on the nast light conmej XG,A

L1}
ia, and Xa are

| (59a)

1
b
1
o
>
Hi
"
¥
"

g, 8, and Yy are defined by integrals of the first-order Ricei tensor
- ) h - . a
lRuv and of the metric perturbation 1huv along.t e stralght‘llne between

two points
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1 |
1 - 1loaB . u' M ' : .
a(P',P) = XX J lRaB(x .+}\X) A(l-2) d _ (59h)
4 |
a(P? Py = > %P J R ) Zoan | ©(5%¢)
af _ - _
1
, 1 a.B p' u i S .
Y(P._ JP)=5 XX J (Bg O+ X ) @ - | (59d)
5 |

-AXaUa is that portion of <y which is produced by the asymptotic, i/r,

external field of the squrée

Shapiro time delay J x( distance from source
produced outside source peint to field point

o T -
"AXUa”MKUa)'( |
(59e)

(see §ii above); and P’ ¢ I (P) means that the integration (58f) is per-
formed over field points P' that lie inside but not on the past light cone

"of P.

Each piece of the distapt gravitatipnal fiéld éﬁﬁv has its-ownr
physical origin and significan;e: |
ZEEv is the "direct field." It is produced by the_étress-energy.

‘ZTUv and propagates as though spacetime were flat. It includes the zero-
order, non-radiative, "1/r" field of the source, and élso‘thaﬁ portion of
the radiation pfoduced "diréctly" by the source's motions. if the internal
gravity of the source has negligible influence on the s0urce's structure énd
'evolﬁtion; then all other pé;ts of iﬁUV wiil be QEgligibie compared to the\
direct fiéld ("linearizedltheofy"; cf. eq. (20) aﬁd the assoclated discus-
siom). | | |

2HY

" is the "focussing field", It is the amount by which the direct

field is augmented due to focussing as it passes through regions of nonzero

. Ricei curvature {(nonzero stress—energy).
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.

_Zﬁgﬁ' is the "transition field" [first discovered in the equations

of general relativity by Chitre, Pfice, and Sandberg (1973,19753); analogue
of "eléctromagnetic transition radiation", Ginzburg and Frank (1946)] .

It is the amount by which the direct field changeé due tO'Shapiro—typé‘_-
time delays within the time-varying source,.

235? is the "whump field." It is the field generated by "gravi-

-1 —up G
1h Y ]-h 2P

name "whump" because in our minds we have a2 heuristic image of gravita-

tational stresses" 1t§YL + (16m) . We have given it the -
tional stresses linking various pieces of the source, and going "whumpity-—

whump-whump" as the source contorts and gyrates.

,éﬁﬁz is the "tail field"., It is generated by the diract field in
thoée regioﬁs where focussing has deformed the gaomét:j‘of the direct ”
wave fronts,

Although it is useful, heuristicélly and in célculaﬁions; to épliﬁ

'i_;l.l\)

2 into these five piecés, one should not attribute too much physical

significance to each individual piece. For example, no individual piece
-satisfies the Einstein field equations or the deDondar. gauge éogdition. .
Howaver, the five individual pieces combine in such a Waylthat theiy sum

does satisfy the field equations and gauge condition; see Appendix C. -
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V. SLOW-MOTION LIMIT OF THE WAVE-GENERATION FORMULAS‘

Consider a weak-field system which has slow internal motions and

weak internal stresses, Characterize it by the following parameters:

L = (sizé of system)

x = (characteristié time~écale of system) = (reduced waveléngth
' of radiation) |

M = (massrof s?stem), (60)-

v E (ITOjl/TOO)max = (maximum internéi velocity)

52 = (]Tij[prO)max = maximﬁm of-(sfress)(tdensiﬁy)__'.

Chapter 36 of MIW derives the quadrupole-moment formalism for gravitation-—

al wave generation under the following assumptioﬁs.(Eqs{ 36,18 of MIW) .
" L/x << 1 which implies v << 1 3 _ o . {(61a)
.

M/L << L/x , 8§ << L/}c. . L (61b)

Constraint (6la) is the standard slow-motion assumption--the only assump¥

tion truly‘neceésary for validity of the quadrupole—mdment formalism (see
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Paper 11 ). Constraints {61b) say that the motion must not be too slow"
if a weak-field calculation is to yield the quadrupole-moment formalism.
In terms of the characteristic freguency O = 1/ % this "not too slow"

aSSumption‘says
2> aymeyndy , o e stEmt .  (61BM)

A violation of these assumptions occurs, in dynamical systems, only when
-the gravltatlonal and stress forces counterbalance each other so precisely

that second-order gravity, zﬁﬁv, can affect the motlon slgnlficantly[ cf.

Chandrasekhar (1964)1. In this case an ana1y51s based on the post- 11near"

approximétion cannot possibly give a correct descrlptlon of the radia—
tion.
Itlis instructi§e to see how the post~linear radiation formulaé (58)
‘of this paper yiéld‘the quadrupole-moment.formalism; when applied to a.
system sétisfying constraints (6L} . | |
| ﬁe begiﬁ by combining thé direct and wﬁﬁmp fields (58b,e) and then

breaking them up again, differently

2B by = o1 * AT
2"";;;1 z 4 J (——xf"‘{*o’ )[(— g) (2 l +4t- L)}at p dax‘ s (525)
JBho = (1/4m) I G Ly naq>r ““p’d iﬁ5§,pjét'P; déxj o ‘l(ezc).'
We then-efaluate éxpression (62b) in the ;est ffamé éf the source
2%;1 =. b4 j ¢ g)(7T 1" 11:\)11)1:61: 43}{, ; o '_ - : (63?

fx - x|
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and by carrying out the analysis of&'MTW £36.10, we bring the spatial

4‘iote that (- 1g)( T + ltf)L) here plays the same role as THY 4 WV

" in MTW. The key properties which they share are (i) vanishing coordinate dlver—"

. . AV
. gence; (L1i) same role in retarded integral for Zﬁu .

transverse-traceless part of this field into the form

ik TT oy ,i2,. 2. _TT
[ (6517 = (2/x) (d7/2e%) £y (2-r) o
- _ (64)'
v (H/r)(L/%) L :
‘ Here‘ijk is the "reduced quadrupole moment” of the source, and E k is'its

transverse traceless part, This is the standard quadrupole-moment formula

for the radiation field.

An order-of-magritude énalysig shows that.all other pafts of our
expression (58) for zﬁsk are negligible, 1In parficular, by using the fol-

lowing relations valid for the source's interior

lEOO v ML, lﬁoj v Mv/L lﬁjk vousdin, ke ws®ald,

—oB ~o3 =08 . o8 S

B .0 ~ R/, b 3 1h. /L, B m.M/L - _(65a)_
as well as the relations

o v ML, (v+ AX?UG) v, o L (65b) .

we obtain for the ratio of each other.part to the "DW1" part (eq. 64):

. e .2 : R ,

l2%#1]352/'(2—}?1351*&| v 57—‘7:)2 <l oo (66)
—ik, ik T, [ M/L., S - = -

[th ALY Lo (L/ )(L/f) << Lo - (66b)
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—yk,, =ik .TT Sk, , =ik \TT
| pBre/ GPpn) | [ohap/ Ghypyd

'32 |
v (%)(f73? << i, (66c)

VI. SUMMARY OF OUR "PLUG-IN-AND-GRIND" FORMALISM FOR WAVE GENERATION

Our post-linear formalism for wave generation can be summarized as

follows:

Repime of Vali&ity. Thé formalism is valid for any system satisfy-—~

ing these constraints: (i) The gravitational field must be weak everyvwhere

|Euv[ << 1 everywhere , - o (67a)
and the source must be isolated [see discussion preceding eq. (4)].. .
(ii) Gravitational and nongravitational forces must not balance each other
so precisely as to enable second-order gravity to influence the system's N
motions significantly. (iii) The source must not focus substantially light

rays emitted from within itself. Mathematically this constraint says

|a(P',P)] << 1_ for P"any avent inside the scurce,
P any event on the future light coﬁé of .P',

‘ | (67b)
where a_.is defined by‘equation (595), For further discussioﬁ of tﬁis
cépstraint, see the first half of 5IV.C.il. (iv) The "Shapiro time delay" =
for light propagation within the source must bé émall compgred to the
characteristic timescale - % .for internal motions of the séurce. Hathemati—.'

cally this conétraint'sayé that in the mean rest-frame of the source
(AtL) TE (PP x| << ® AU . (67¢)

57 internal’

Here x and x' are spatial locations of events P and pY that lie
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 inside the source, P 1is on the future light cone of P', and Yy is de-
finedby'equétion(59d). For further discussien, see the second half of
§IV.,C.4id.

Calculation of the System's Motion., For a system satisfying these

constraints one calculates the internal structure and dynémics by using
the post-linear formalism of'glv,s[eqs. {23) and (28)7].

Calculation of the Distant Field. To calculate the gravitational

field ziuv in the fadiation zone, far from the source,.one takes the re-
sult of the post-linear analysis, plugs it into gquations(SS),and (59},
and grindsf | |

In paper IIIwe shall use this formalism to éalculéte g#avitétionél

bremsstrahlung radiation.
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APPENDIX A

. WHY USE THE CURVED-SPACE SCALAR-WAVE QPERATOR?

In laying the foundafions of our analysis [in and near eq. (6}] we
write the Einstein field equations in terms of the curved-space scalar wave
operatorE]S. We choose to do this because the obvious alterné&ives (the
fl§t4space wave operatar[jf or the cﬁryedfspace tensor wave operatqujt)
would ultimately lead to complicatioﬁs or dangers in our aﬁalysis.

The flat-space operatbrlﬂf treats the fiéld'prdpagation from the out-
set as though it were on flat-space dharacteristics.Cstraight coordinate
. line;). Because fhe true characteristics Suffer- the Shapiro time delay
which involves a logarithm of distance, ' the use-of E] would lead.to logar-

in the radiative field at large r .
1thmlc divergences , Lf one were sufficiently careful, one could remove
those divergences without serious error—-but that is a dangerous enterprise;
Even if one succeeded, one would be left in the-end witﬁ the interesting
effects of focussing, time delay ("tran51t10n radiation' ), and tail all -

lumped into the "whump" part of the field. We prefer to keep them separate.

Consider next the curved-space tensor wave operator

o, 'ﬁw’“ + 2R I

. uBu —aB 21{0&@?)‘)0‘ o . -""(A-l)"
- [ef. MIW eq; (35.64)]. Because the true pfopagatiou equation fhr very weak
gravitatioﬁal waves on a curved background iSCI?FN.= 0 ;,it is tempting to
formulate our analysis in terms oflj rather thanij .. By'ﬁsino Eg_we push‘
into the "whump" part of h HVan 1mportant phy51cal effect' the cufvétufe— :
induced rotation of polarization. In effect, part of our whumo field éorrects.

the error in our direct field's unrotated polarization. Had we usediﬁt

rather than E%, polarization rotation would have shown up imn EIV.C.iii as a
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separate piece of the radiation field.
The tensor wave operator has a disadvantage which, for our purposes,
 outweighs the above advantage. Suppose that ome constructed a teasor

Green's function for Ut

T

[:It Gu\)a_s (P Py = - _%_(gua gVB +gUB g‘u‘a )(ggy)"J-/& §4(X_X') ’ (Az)

or for any other wave operator with the form

Py VA TV o ' "oy W B - Ciany
= + . :
. Dother h h s (any "background f:u.eld.) o8 h . (AL?)
| v et ' . .U‘Jd'B' v
That Green's function would have a first-order tail 1Gtail (P',P) with

1 1 N
"sources" BU\)OL 8] involving the Riemann tensor [cf. egs. (43a) and (45¢)1.
Such a tail would originate everywhere on the light cdne of P', whereas

the tail lctall

for our scalar Green's function originates only on rays
that have passed through matter. In practical calculations involving
lumpy sources--see, e.g., Paper.' III--—thét tail would be as difficult to
‘ca.l_culate as the whump part of the field. We prefer our sca.lar ﬁail be-

cause of its greater simplicity. By using E}S we dump all serious calcu— '

lational complexities, for lumpy sources, into the whump pzi_rt of thé field.
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APPENDIX B

LINE-INTEGRAL IDENTITIES

The weak-field Green's function -G(P',P) used in this paper involves
1 paper

" three integrals o,8,Y along'%traight'lineé”. In this appendix we take

the line of integration to be

&+ Axa . 0<gr<1, R x> . - {B1)

] G
dz(l)- &

The three line integrals are

1 _ .
" uvr- o ' . :
Y.h 5 XX | lhuvddk . o | | : (82)
- |
ozt [ R aaen a ' | : L (B3)
7 |1y AATAIGA e - L
o .
} : o .
INTIRY 2 , . S
B = XX J 1Ry A ar o, S (B4)
5'0 .-
where lhuv‘ is assumed to satisfy the deDonder condition
T V= n V-LIn =0 S (®5)
1 v 1 pw 2 1, o - B

_and the Ricci tensor is therefore given by

o

1
Rv ™ " 21%w,0

Ry (86)

and where the index notétionused is thatﬁf a Lorentz frame in flat spaéetime;‘

Below we 1ist ‘a2 number of useful identities 1inking'the line_inte—
grals d;ﬁ,Y, , their derivativesra; noint P ;land the‘values of 1hﬁﬁ'
and R aﬁ [

1w

o _ 1. . ' o )
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i

xPx% 8+ 3P r . | (B8

»PJ 2' 7 1 po
XDY;p =Y +%prc lhplrf 7 . | L 7(-59)
XDXOY,EU: xFx° ihp'g + % xpx‘f’f Pogt L . o (210)

Similar identities involving derivatives at P' and mixed derivatives_at

P' and P can be derived fairly easily.  For. example,

]

= -2 - Fh-FhT e
r = J
lh = lh(P ).

The derivations of these identities are quits straightforward. The

e
sP

wvhere b = 1h(P) and

Y

necessary techniques are illustrated by the following derivation of iden-
tity (B7): By differentiating definition (83) and making use of equations

(Bl), we obtain .

: 1 :
M N
o =X R A(1-X) dAr
o0 J Hp (1=4)
0 1 - o
+ = 2 f (@R, /087 (387 /0x%) A1) ax
1 ‘ 1 _ o B
= M - L gHev 6 1) dh
X [.RUP A(1-A) dh + 5 XX [ (Ruv’g)glﬁ p).l(l k).dl
0 ' 0 ‘
1 . 1 o
oM ' 1 u,v .2 \ .
= X R A1-X) dx + 5+ XK R AT(I-2) dx
0 0 .
Herei RuU,U = aRuv/ago is the derivative of -Ruv' at tha integration poinﬁ

2(A). When multipliéd by %P this expression gives
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1 1 |
R VRV 3y LV [ %Py a2a-
o = 2% leN ML) @+ zX_X_J Rpy,p ¥ A0 &
' 0 ‘ 0
1 , 1
= yHyY _ LGV 33 22 (1)
- ¥y JR}N 210 @+ g ¥R f(daw/dh) A2 (1-1) dr
0 0 o

By integrating the last expression by parts we obtain

xPu

fl

1 :
H,V 1 2_ .3
.0 XX f Ruv[k(lmk) - F(d/dAY(A7= A7) ] dA
5 _ :

o

1.
= 2 X" [ R A an=2p . . qQED.
. . . ,
Iﬁ this case the integration by parts gave no endpoint terms;-but in other
- cases [egqs. (B8)-~(B12)] nonzero endpoint terms are obtained.
In manipulations of our weak-field Green's function lG(P',P) and of

Ewg

our second-order gravitationél field .07 (see, e.g.; Appendix C) two other

2

identities are useful:

88t = @) P -o P5oamaseexy , 13

PO

' p_ p
(8™ af) Tma 8t .66

_ 1 1.0 o ' et .
[ai—z lh-+k(Y’p > X thp)a_] 4ir 54(X x-) .. (Bl4)

"Here & 4is the flat-space propagator between P' and P

8268 GXC ), : - (B152)

which is related to the 4-~dimensional Dirac delta function
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8, (") = 60 x0) BGet- k1) 8P 52 8- ) (B15b)

by . ‘ ~
§ = tm 8, xx") L (B15¢)

L

and S' is the derivative of the propagator (Bl5a) with respect to its argument. :

The absence of prlmes on 1nd1ces and onh's hn(Bl3)and(B]A) indicates that
all derivatives and endpoint terms are taken at P ; none are at P The

identities {(B13) and (B14) can be derived with some labor from the iden—~

tities (B7)-(B1l).
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APPENDIX C

'PROOF THAT THE "PLUG-IN-AND-GRIND" FORMULAS FOR ,?"“ SATISFY
THE FIELD EQUATIONS AND GAUGE CONDITION '

Here we briefly sketch the proof that our second—order grav1tational
field [egs. (58)]satlsf1es the second-order Einstein fisld equation [eqs. (16)

with n = 2] and the deDonder gauge condition éﬁuv v = 0
B 3

. As part of our
proof we shall derive expressions for the &mount.by which*eéch piece of
éguv fails, by itself, to satisfy the field quations and gauge éoudition.

A preliminary step in our proof is to rewrite thé "tai1“.and "transi-
tion" fields (58f) and (58d) in new forms.

élthough expressiqn (58f) for tﬁeftail seens Optimal for prabticai
radiation calculatipns, the restriction Pf € IF(P) makes itrnasty for
formal manipﬁl&tions. To get rid df this restriction,‘we take éﬁpression

(R13) for BS' , in it we replace P by ‘P", and then we insert it into

expression (58f). The result,

L n ) s G TR 0

mY = (1/m) {a(P',P'")] " s X X =n § X
C2UTL o P Tre t 2 ‘w87 Tret 2 T T Tof
x Ve a0 (e
‘ . . ‘ — .
is an expression which gives the same value for ZhTL whether one imposes

or omits the restriction P' e I (P). One way to see-that {Cl1) isroblivi— .

ous to the restriction P' e I7(P) is this: Take the source equatiom (31)

for the tail of the exact curved—space Green's function; éalculate its lowest— . -

order form

Gtail pp = —-(lm')ﬂl[a(P‘,P)] D 6(1 XQXS it B) HEE
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invert this uéing a flat~space propagator; use the resﬁlt;ng_ Gtaél t
calculate thV ; the result will be expression (Cl)—Qand nowhere in the
derivation did ane needrto‘impose the restriction P' € I (F).

Expression (58d) for the transition field involves a "time-delay
function” Y(P',P) from which the logarifhmic, ”externalitime delay"
ﬂ(—XgUd) has been removed. A straightforward subtraction of the ex;ernal“
time delay is well sujted to practical calculations, Eut pdoriy suited to
formal manipulations of zﬂuv .V-In the formal manipulations Qf this appen-

dix we shall perform the truncation in a "smoother" manner: We surround

the source‘byra (hypothetical)ﬁgcloud of negative-mass material, with total

mass, -M, eduél in magnitude to that of the source, 4. ﬁe put the cloud
far enough from thé source (e.g., at radius £ n 100L) ﬁhat it is very dif-
fuse, and this contributes_negligibly to the line in;egrals_ o and B

but near enough that the éhapiré time delay 2M zneifL) iﬁ going.from

source L to cloud . £ is small compared to the timescalerrk of the

source's internal motions. The cloud automaticéliy ramoves the_exﬁérnal g

Shapiro time delay; no artificial truncation of Y is needed. The second- ‘

- order graV1tatlonal fleld i= then given by equatlons (58) and (Cl} every-

where (inside the source and out), except that we must remove the artificial

trunéation'from (58d):

THY _ ' 1 o B ' MV, 4 ' - -
2"r 7. J Y(P P)aret X% fag) 2T (P-)fif“ e (c2)

Tutn now to the prodf that our second-order field satisfies the

second-order Einstein field equation. We begin by applying the first;order-

wave operator
o 0B oB A
le = (n h™) BOLSB : R )

44



to each of the five pieces of our second-order field. By applying 1{:35

‘to the direct field (eq. (58b)) and by using equatfon (Bl3¢c) we obtain |

a8 QE‘IJ)“ = 167 (1 - VY

i —_—
21
- 48P0 apagj ret(~xx ng) TP dx L ()

By applying lBs to the whump field (eq. 58e.) and by using (Bl5c¢) we

obtain
= v —1p Vg . . ‘ N ’ .
lnS ZhW 16w 1tL"'L lh Me) lh “40 T . . (Ci'-b)

By applying 155 to the tail field (eq. Cl) and by using (BlSc) we obtain

v _ ' 1 a8 v , b v
a .mvy = -4 J [a(P ,P)],p ( e ”aB) 5T (P') d'x" . (Che)

ret

By applying lus to the focussing field (58c), and by using (B15c) and the .

‘relation a(P,P) = 0 [cf. eq. (B3)] we obtain

g =4 J CIGARON I ret(“'XX o) Ve at o

| ’ _ , . (C4d)
Pt 1B g0 : |

8 J o (P ,P).]’p [0, .GX B)] T Ve ) ax .

By applying lDé to the transition field (C-Z), and .‘D}’ using (314), (B11),
: (Bl5c)-, and limits as P' -+ P that are obtainable from (.Bl)-(Bip),walobtain

—pv; =0 1 e B UV oy By

O hg . 4h %%’I 8op G X ”aB) TP qx -
-8 | [P 6 G 0 1? TVey d L
T s ret rotﬂ X_ "

45



By adding up all five pieces (Cé4a)-(Cie) we obtain

Y _ i _ 1
1DS 2h. = 161:[(1. 5

= UV W, SUp Vo ' _
) LT +‘ltL_L] 1 4 Jb o {C5)

which is the second-order Einstein field equation (16).

Turn now to a proof that our field (58) satisfiaes the . deDonder gauge
dition _a"Y _ =0 or ‘Eracti | 2y . ' |
condition Ry except for fractiomal errors of 0(e”). From {58b) and

the relation

3y J 8ot 2 %P Nag) £CP) atxt = J a(% B Nug) By £ a*x' (c6)

valid for any function f£{P'), we obtain.

A

—uv ‘ l_- ] 8 7 7,.2\? ;) . ' ‘ .
2"'p W 4{ ESz:et(z XX Ty {2T | (_P ) [1- 1h§P'_)]}’-un dxt . (C7a)
From (582), (C6), and h*° =0 we obtain
Yo 1 o8 e -1 —up . VO S :
2™ vt J Sret@ FF Ty Ly @ém = b & 1 x'.

. 1 0V 17 ,p at P
(C7b)

We now add (C7a) and (C7b) and use the post-linear equations of motion (24a)

rewritten in the form

- ;Nl -
ZT (1 lh) + 1t. v 0
[cf..eq;'(3)] to obtain
GV s B = am e APy WP B dr.
2 F 2y )Ly rec2 5% Tag) 4 R ot X

: t ' S
We then use an integration by parts on xp together with (C6) and a re-
labelling of indices to obtain
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l{.B

WYY amla, [ G ) R

—-uv
(213 2w v (7

o'p! l (P ) d x',

We then give P' the new name "P" and rewrite iﬁuv(P”) as a'retarded

integral [the solution to eq. (24b)}; the result is

‘( %U * Eiw)) v (1/m) 3\) ” 5ret(% Eﬂ_ﬁg nOLB) lEpg(p") %

. “ 1 oM Qn . }l\) r- 4 " .4" "
[D]’.' t(2 XX B)},D”O'" ZT (P )d x'"dx .(C?(‘.)

By applying av'.to expression (Cl), adding it onto_(C?c),‘using ideﬁti—

ties (B14) and (B15c), integrating by parts, and using the limiting forms of

(B1l)-(B4) as . -P » P'" , we obtain

T T TN
Ghp F g™+ o0)

= ~43 j Y(P' P) retff x“xﬁ,nas) 2T““{P') atxt E (crd)
.__'. - T ' A MV oma 4 4
_ 43v J a(PT,P) Sret(Z X% ”aB) ZT (P')y d'x .

Comparison with expressions .(C2) fof 7 LY ang (58c) for .2%¥V shows

that

v —u\).*-uv_,r‘w_}_—u\J‘_ s ey
(Ghp "+ gy F by F gl e ) = 0 - ©®

i.e., our total second-order field does satisfy the deDonder gauge con-

dition.
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FIGURE CAPTIONS

o

Fig. 1. The points P,P', P used in evaluating th_é post-linear |
Green’'s fﬁ.nction lG(P' .P) and ia calculating the pc;_st—iinéér o
gravitatioﬁal—wa*;:e field- Z?JU(P) . Pari; (a) shows the parametrized
st:aight.—line curves C_G{A) and | G{}"(A) linking P, P', and .P";

it "

part (b) shows the 4-vectors X , X° , and I ‘linking them.
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